

CENTRO DE EXCELENCIA GEODÉSICO MUNDIAL DE LAS NACIONES UNIDAS

MODERNIZACION DEL SISTEMA DE REFERENCIA
GEOESPACIAL
TALLER DE DESARROLLO DE CAPACIDADES

Ajustes geodésicos nacionales

Nicholas Brown Jefe de oficina, UN-GGCE

Día 2, Sesión 2 [2_2_1]

Agradecimientos: Phil Collier (AUS); Nic Donnelly (NZ); Roger Fraser (AUS); Craig Harrison (AUS); Anna Riddell (AUS).

Summary

- A national geodetic adjustment is the process used to define or refine the coordinates of survey marks in a country.
- The adjustment procedure optimizes the accuracy of the coordinates and ensures consistency with regional and international reference frames.
- A new national geodetic adjustment can be done to align with new versions of ITRF or accommodate a new or denser national GNSS CORS network.

When to consider performing a national geodetic adjustment

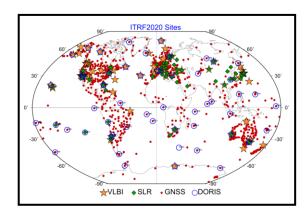
- Datum not aligned with current version of ITRF
- Distortion in datum due to geophysical reasons
- Increase in accuracy of datum is needed for emerging technologies
- GNSS CORS network has been densified (improved resolution)

Cómo alinear NGD con ITRF

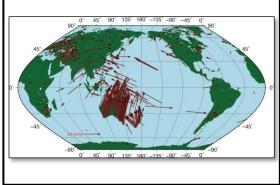
ITRF2020

VLBI + SLR + GNSS + DORIS

Marco de referencia regional


GNSS

Red GNSS nacional


GNSS

Datum Geodésico Nacional

GNSS + Terrestre

- Marco Internacional de Referencia Terrestre
- En función del tiempo
- Desarrollado por IAG Services

- Marco de referencia Asia-Pacífico
- En función del tiempo
- Desarrollado por organizaciones científicas regionales (Geoscience Australia)

- Red australiana de GNSS CORS en la placa continental australiana
- En función del tiempo
- Desarrollado por organizaciones científicas regionales (Geoscience Australia)

- Ajuste geodésico australiano
- Limitado a la red GNSS CORS en la placa continental australiana.
- Dato dependiente del tiempo (ATRF) y Datum estático (GDA2020)
- Desarrollado por organizaciones científicas regionales (Geoscience Australia)

Cómo alinear la red GNSS de un país con el ITRF

1. Seleccione Estaciones de referencia globales:

- Seleccione un conjunto de estaciones GNSS globales y regionales bien distribuidas con coordenadas conocidas en ITRF2020.
- Obtenga los datos de observación RINEX correspondientes a estas estaciones de referencia en los centros de datos del IGS (por ejemplo, CDDIS).
- Acceda a productos GNSS de alta calidad proporcionados por el Servicio GNSS Internacional (IGS), incluidas órbitas precisas, relojes de satélites y estaciones, y Parámetros de Rotación de la Tierra (ERPs), todos ellos coherentes con ITRF2020.

2. Procese su red GNSS nacional con el software GNSS:

- Utilice software de procesamiento GNSS de alta precisión (por ejemplo, Bernese, GAMIT/GLOBK, GIPSY).
- En su procesamiento:
 - Incluya sus estaciones GNSS nacionales junto con las estaciones de referencia ITRF2020 seleccionadas en una solución combinada.
 - Corrija las órbitas, relojes y ERPs proporcionados por el IGS para asegurar la alineación con ITRF2020.
 - Restrinja (o fije) las coordenadas de las estaciones de referencia a sus valores ITRF2020 publicados.
- Mediante el procesamiento combinado y las restricciones, sus estaciones GNSS nacionales se posicionarán en relación con el marco de referencia fijo, alineándolas así con ITRF2020.
- Las coordenadas de salida de sus estaciones nacionales se expresarán en el marco de referencia ITRF2020.

• En el caso de los países de Asia-Pacífico, podría utilizar todas las estaciones APREF o un subconjunto de ellas.

- Obtenga los datos RINEX de Geoscience Australia, que es un centro regional de datos del IGS.
- Acceda a productos GNSS de alta calidad proporcionados por el Servicio GNSS Internacional (IGS), incluidas órbitas precisas, relojes de satélites y estaciones, y Parámetros de Rotación de la Tierra (ERPs), todos ellos coherentes con ITRF2020.
- Este paso requiere ciertos conocimientos especializados sobre el procesamiento GNSS.
- Considere la posibilidad de asociarse con otro país que tenga competencias en este ámbito.

Regional Reference Frame

National GNSS Network

ITRF2020

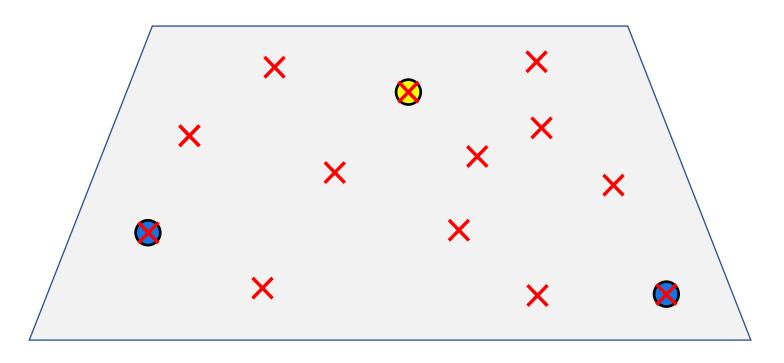
Cómo alinear NGD con ITRF

Realice un ajuste geodésico nacional

- Utilice las coordenadas de las estaciones de la Red Nacional GNSS como puntos de control/dato en un ajuste geodésico nacional exhaustivo.
- Integre todos los datos geodésicos nacionales disponibles en un ajuste geodésico nacional (GNSS, terrestre, nivelación, etc.) para establecer un datum geodésico nacional coherente y moderno alineado con ITRF2020.
- Esto puede hacerse utilizando software como DynAdjust
- De este modo, las coordenadas de la estación GNSS se propagan hasta las marcas de medición locales.

National GNSS Network

National Geodetic

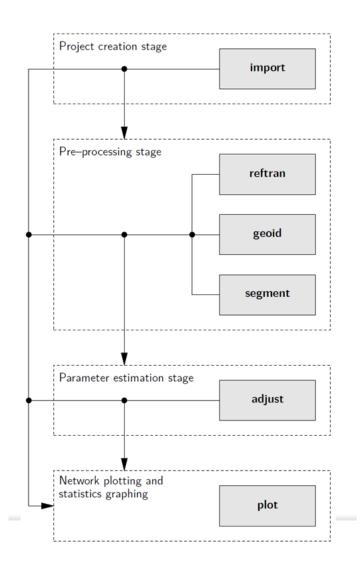

Datum

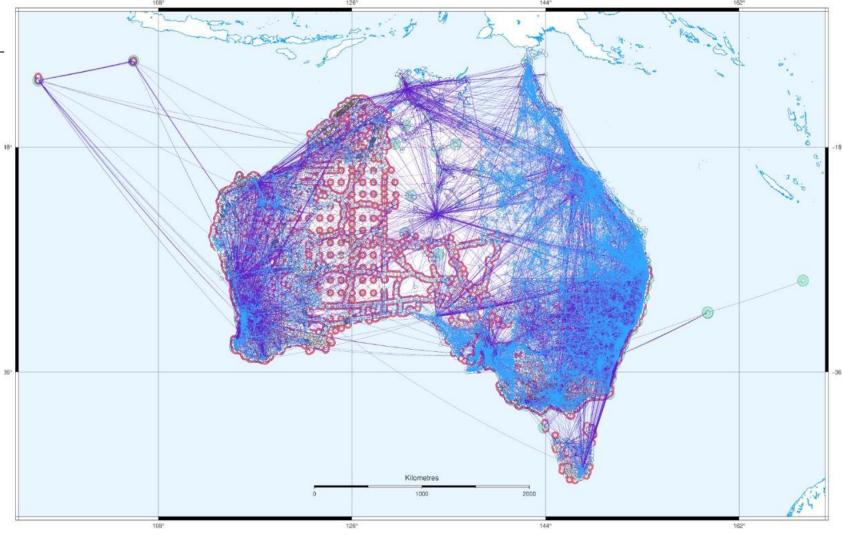
GNSS

GNSS + Terrestrial

Cómo alinear NGD con ITRF

- CORS GNSS incluidos en el marco de referencia internacional o regional
- CORS GNSS incluidos en la RedNacional GNSS




Enfoque de ajuste totalmente automatizado

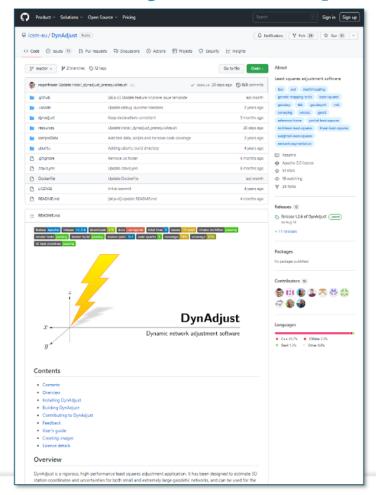
- Importar todos los datos
 - SINEX, líneas de base GNSS, mediciones terrestres, nivelación
- Alinear las estaciones y las mediciones con una época (por ejemplo, 2020)
 - Transformación de datum/marcos (ITRF2000,2005,2008,2014)
 - Aplicar el modelo de movimiento de la placa si no se dispone de parámetros directos
- Aplicar el modelo geoidal para convertir los datos ortométricos en elipsoidales
 - (Gravedad) desviaciones de la vertical
 - Separaciones elipsoide-geoide
- Segmentación automática de la red
- Ajuste escalonado paralelo o secuencial
- Incertidumbres sobre la exportación

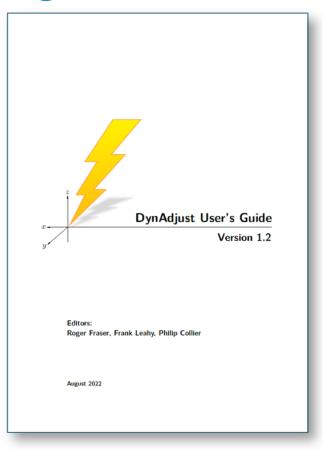
Ajuste nacional

333,164	Stations
2,400,419	Measurements
1,542	Geodetic azimuth
132	Astronomic azimuth
215	Zenith angle
484,696	Direction set
201,213	MLS arc
186,479	Ellipsoid arc
46,464	Slope distance
1,171,545	GNSS baseline
89,175	GNSS baseline cluster
2,178	GNSS point cluster
230	Ellipsoid height
204,178	Orthometric height
12,372	Level difference

DynAdjust

DynAdjust: open source adjustment package





Generic Mapping Tools

Recursos

- Análisis de GNSS
 - BERNESE análisis de redes GNSS
 - AUSPOS Análisis de emplazamientos por GPS https://www.ga.gov.au/scientific-topics/positioning-navigation/geodesy/auspos
 - OPUS Análisis de emplazamientos GNSS https://geodesy.noaa.gov/OPUS/
- Control de calidad GNSS (Anubis) https://gnutsoftware.com/software/anubis/
- Comprobación, reparación y manipulación del GNSS https://kg4-dmz.gfz-potsdam.de/services/gfzrnx
- Ajuste geodésico
 - DynAdjust (https://github.com/icsm-au/DynAdjust)
- Presentación de formación sobre mínimos cuadrados
 - Presentación completa https://www.youtube.com/watch?v=T5YB_1Jpjp0 (1hr 42 mins)
 - Capítulo 1 ¿Qué son los mínimos cuadrados y por qué los utilizamos en DCM? https://youtu.be/0YkjHsVgGMk (26 mins)
 - Capítulo 2 ¿Por qué iteramos? https://youtu.be/ iFg3Ho cRI (18 mins)
 - Capítulo 3 Ponderación de las observaciones https://youtu.be/2yQCWblrQGs (10 mins)
 - Capítulo 4 Restricciones https://youtu.be/WcwKv-vWUtk (7 mins)
 - Preguntas y respuestas sobre DynAdjust https://youtu.be/WZN38NrPBeY

